{ "id": "cond-mat/9701013", "version": "v1", "published": "1997-01-04T02:23:18.000Z", "updated": "1997-01-04T02:23:18.000Z", "title": "Anomalous diffusion at the Anderson transitions", "authors": [ "Tomi Ohtsuki", "Tohru Kawarabayashi" ], "comment": "Revtex, 2 figures, to appear in J. Phys. Soc. Jpn.(1997) Feb", "doi": "10.1143/JPSJ.66.314", "categories": [ "cond-mat.mes-hall" ], "abstract": "Diffusion of electrons in three dimensional disordered systems is investigated numerically for all the three universality classes, namely, orthogonal, unitary and symplectic ensembles. The second moment of the wave packet $<\\vv{r}^2(t)>$ at the Anderson transition is shown to behave as $\\sim t^a (a\\approx 2/3)$. From the temporal autocorrelation function $C(t)$, the fractal dimension $D_2$ is deduced, which is almost half the value of space dimension for all the universality classes.", "revisions": [ { "version": "v1", "updated": "1997-01-04T02:23:18.000Z" } ], "analyses": { "keywords": [ "anderson transition", "anomalous diffusion", "universality classes", "temporal autocorrelation function", "space dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "RevTeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }