{ "id": "cond-mat/9612116", "version": "v1", "published": "1996-12-12T12:57:12.000Z", "updated": "1996-12-12T12:57:12.000Z", "title": "Finite Size Scaling Analysis of Exact Ground States for +/-J Spin Glass Models in Two Dimensions", "authors": [ "N. Kawashima", "H. Rieger" ], "comment": "7 pages Latex, 5 postscript-figures included", "journal": "Europhys. Lett. 39 (1997) 85", "doi": "10.1209/epl/i1997-00318-5", "categories": [ "cond-mat.dis-nn" ], "abstract": "With the help of EXACT ground states obtained by a polynomial algorithm we compute the domain wall energy at zero-temperature for the bond-random and the site-random Ising spin glass model in two dimensions. We find that in both models the stability of the ferromagnetic AND the spin glass order ceases to exist at a UNIQUE concentration p_c for the ferromagnetic bonds. In the vicinity of this critical point, the size and concentration dependency of the first AND second moment of the domain wall energy are, for both models, described by a COMMON finite size scaling form. Moreover, below this concentration the stiffness exponent turns out to be slightly negative \\theta_S = -0.056(6) indicating the absence of any intermediate spin glass phase at non-zero temperature.", "revisions": [ { "version": "v1", "updated": "1996-12-12T12:57:12.000Z" } ], "analyses": { "keywords": [ "exact ground states", "finite size scaling analysis", "ising spin glass model", "domain wall energy", "finite size scaling form" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }