{ "id": "cond-mat/9611027", "version": "v1", "published": "1996-11-05T19:06:21.000Z", "updated": "1996-11-05T19:06:21.000Z", "title": "Finite size scaling in neural networks", "authors": [ "Walter Nadler", "Wolfgang Fink" ], "comment": "4 pages, RevTex, 5 figures, uses multicol.sty and psfig.sty", "doi": "10.1103/PhysRevLett.78.555", "categories": [ "cond-mat.dis-nn", "adap-org", "nlin.AO" ], "abstract": "We demonstrate that the fraction of pattern sets that can be stored in single- and hidden-layer perceptrons exhibits finite size scaling. This feature allows to estimate the critical storage capacity \\alpha_c from simulations of relatively small systems. We illustrate this approach by determining \\alpha_c, together with the finite size scaling exponent \\nu, for storing Gaussian patterns in committee and parity machines with binary couplings and up to K=5 hidden units.", "revisions": [ { "version": "v1", "updated": "1996-11-05T19:06:21.000Z" } ], "analyses": { "keywords": [ "neural networks", "critical storage capacity", "hidden units", "hidden-layer perceptrons", "relatively small systems" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "RevTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }