{ "id": "cond-mat/0701236", "version": "v1", "published": "2007-01-11T09:01:49.000Z", "updated": "2007-01-11T09:01:49.000Z", "title": "Bogolyubov approximation for diagonal model of an interacting Bose gas", "authors": [ "M. Corgini", "D. P. Sankovich" ], "journal": "Physics Letters A, vol.360,issue 3,2007,p.419-422", "doi": "10.1016/j.physleta.2006.07.021", "categories": [ "cond-mat.stat-mech" ], "abstract": "We study, using the Bogolyubov approximation, the thermodynamic behaviour of a superstable Bose system whose energy operator in the second-quantized form contains a nonlinear expression in the occupation numbers operators. We prove that for all values of the chemical potential satisfying $\\mu > \\lambda(0)$, where $\\lambda (0)\\leq 0$ is the lowest energy value, the system undergoes Bose--Einstein condensation.", "revisions": [ { "version": "v1", "updated": "2007-01-11T09:01:49.000Z" } ], "analyses": { "keywords": [ "interacting bose gas", "bogolyubov approximation", "diagonal model", "system undergoes bose-einstein condensation", "lowest energy value" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }