{ "id": "cond-mat/0612510", "version": "v2", "published": "2006-12-20T07:26:47.000Z", "updated": "2006-12-26T06:34:00.000Z", "title": "Kolmogorov Dispersion for Turbulence in Porous Media: A Conjecture", "authors": [ "Bikas K. Chakrabarti" ], "comment": "3 pages", "doi": "10.1016/j.physa.2007.04.116", "categories": [ "cond-mat.stat-mech", "cond-mat.soft" ], "abstract": "We will utilise the self-avoiding walk (SAW) mapping of the vortex line conformations in turbulence to get the Kolmogorov scale dependence of energy dispersion from SAW statistics, and the knowledge of the disordered fractal geometries on the SAW statistics. These will give us the Kolmogorov energy dispersion exponent value for turbulence in porous media in terms of the size exponent for polymers in the same. We argue that the exponent value will be somewhat less than 5/3 for turbulence in porous media.", "revisions": [ { "version": "v2", "updated": "2006-12-26T06:34:00.000Z" } ], "analyses": { "keywords": [ "porous media", "kolmogorov dispersion", "turbulence", "kolmogorov energy dispersion exponent value", "conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }