{ "id": "cond-mat/0611228", "version": "v2", "published": "2006-11-08T20:27:18.000Z", "updated": "2007-08-09T17:21:00.000Z", "title": "Control of electron spin and orbital resonance in quantum dots through spin-orbit interactions", "authors": [ "Peter Stano", "Jaroslav Fabian" ], "comment": "11 pages, 5 figures; v2: introduction and conclusions broadened, moderate structure and content changes", "doi": "10.1103/PhysRevB.77.045310", "categories": [ "cond-mat.mes-hall" ], "abstract": "Influence of resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments it is shown that spin and orbital resonance can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of Rabi frequency to the dot configuration (orientation of the dot and a static magnetic field) as a result of the anisotropy of the spin-orbit interactions. The so called easy passage configuration is shown to be particularly suitable for magnetic manipulation of spin qubits, ensuring long spin relaxation time and protecting the spin qubit from electric field disturbances accompanying on-chip manipulations.", "revisions": [ { "version": "v2", "updated": "2007-08-09T17:21:00.000Z" } ], "analyses": { "keywords": [ "spin-orbit interactions", "orbital resonance", "quantum dots", "long spin relaxation time", "electron spin" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. B" }, "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }