{ "id": "cond-mat/0608160", "version": "v3", "published": "2006-08-07T19:27:58.000Z", "updated": "2007-04-09T09:16:25.000Z", "title": "On polynomials interpolating between the stationary state of a O(n) model and a Q.H.E. ground state", "authors": [ "M. Kasatani", "V. Pasquier" ], "comment": "relation with Kazhdan-Lusztig basis added; text modified; 2 figures added", "doi": "10.1007/s00220-007-0341-0", "categories": [ "cond-mat.stat-mech", "cond-mat.mes-hall", "math.QA" ], "abstract": "We obtain a family of polynomials defined by vanishing conditions and associated to tangles. We study more specifically the case where they are related to a O(n) loop model. We conjecture that their specializations at $z_i=1$ are {\\it positive} in $n$. At $n=1$, they coincide with the the Razumov-Stroganov integers counting alternating sign matrices. We derive the CFT modular invariant partition functions labelled by Coxeter-Dynkin diagrams using the representation theory of the affine Hecke algebras.", "revisions": [ { "version": "v3", "updated": "2007-04-09T09:16:25.000Z" } ], "analyses": { "keywords": [ "ground state", "stationary state", "invariant partition functions", "polynomials interpolating", "counting alternating sign matrices" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "year": 2007, "month": "Dec", "volume": 276, "number": 2, "pages": 397 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007CMaPh.276..397K" } } }