{ "id": "cond-mat/0605030", "version": "v2", "published": "2006-05-01T19:37:00.000Z", "updated": "2006-07-30T13:58:01.000Z", "title": "Resonances in one-dimensional Disordered Chain", "authors": [ "Herve Kunz", "Boris Shapiro" ], "comment": "latex, 1 eps figure, 9 pages; v2 - final version, published in the JPhysA Special Issue Dedicated to the Physics of Non-Hermitian Operators", "journal": "2006 J. Phys. A: Math. Gen. 39 10155-10160", "doi": "10.1088/0305-4470/39/32/S16", "categories": [ "cond-mat.dis-nn", "math-ph", "math.MP" ], "abstract": "We study the average density of resonances, $<\\rho(x,y)>$, in a semi-infinite disordered chain coupled to a perfect lead. The function $<\\rho(x,y)>$ is defined in the complex energy plane and the distance $y$ from the real axes determines the resonance width. We concentrate on strong disorder and derive the asymptotic behavior of $<\\rho(x,y)>$ in the limit of small $y$.", "revisions": [ { "version": "v2", "updated": "2006-07-30T13:58:01.000Z" } ], "analyses": { "keywords": [ "one-dimensional disordered chain", "complex energy plane", "real axes determines", "asymptotic behavior", "resonance width" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2006, "month": "Aug", "volume": 39, "number": 32, "pages": 10155 }, "note": { "typesetting": "LaTeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006JPhA...3910155K" } } }