{ "id": "cond-mat/0604338", "version": "v1", "published": "2006-04-13T11:33:27.000Z", "updated": "2006-04-13T11:33:27.000Z", "title": "Derivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz", "authors": [ "O. Golinelli", "K. Mallick" ], "comment": "16 pages", "journal": "J. Phys. A: Math. Gen. 39 (2006) 10647-10658", "doi": "10.1088/0305-4470/39/34/004", "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional periodic lattice. In this Matrix Product Ansatz, the components of the eigenvectors of the ASEP Markov matrix can be expressed as traces of products of non-commuting operators. We derive the relations between the operators involved and show that they generate a quadratic algebra. Our construction provides explicit finite dimensional representations for the generators of this algebra.", "revisions": [ { "version": "v1", "updated": "2006-04-13T11:33:27.000Z" } ], "analyses": { "keywords": [ "asymmetric exclusion process", "algebraic bethe ansatz", "matrix product representation", "matrix product ansatz", "explicit finite dimensional representations" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2006, "month": "Aug", "volume": 39, "number": 34, "pages": 10647 }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006JPhA...3910647G" } } }