{ "id": "cond-mat/0603827", "version": "v3", "published": "2006-03-30T20:19:25.000Z", "updated": "2006-04-18T20:36:06.000Z", "title": "The Kauffman model on Small-World Topology", "authors": [ "Carlos Handrey A. Ferraz", "Hans J. Herrmann" ], "comment": "AMS-LaTeX v1.2, 8 pages with 8 figures Encapsulated Postscript, to be published in Physica A", "doi": "10.1016/j.physa.2006.04.063", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "We apply Kauffman's automata on small-world networks to study the crossover between the short-range and the infinite-range case. We perform accurate calculations on square lattices to obtain both critical exponents and fractal dimensions. Particularly, we find an increase of the damage propagation and a decrease in the fractal dimensions when adding long-range connections.", "revisions": [ { "version": "v3", "updated": "2006-04-18T20:36:06.000Z" } ], "analyses": { "keywords": [ "small-world topology", "kauffman model", "fractal dimensions", "perform accurate calculations", "infinite-range case" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }