{ "id": "cond-mat/0601344", "version": "v2", "published": "2006-01-16T13:31:48.000Z", "updated": "2006-02-13T16:34:45.000Z", "title": "On the mean Euler characteristic and mean Betti numbers of the Ising model with arbitrary spin", "authors": [ "Philippe Blanchard", "Christophe Dobrovolny", "Daniel Gandolfo", "Jean Ruiz" ], "comment": "12 pages", "doi": "10.1088/1742-5468/2006/03/P03011", "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP", "physics.comp-ph" ], "abstract": "The behaviour of the mean Euler-Poincar\\'{e} characteristic and mean Betti's numbers in the Ising model with arbitrary spin on $\\mathbbm{Z}^2$ as functions of the temperature is investigated through intensive Monte Carlo simulations. We also consider these quantities for each color $a$ in the state space $S\\_Q = \\{- Q, - Q + 2, ..., Q \\}$ of the model. We find that these topological invariants show a sharp transition at the critical point.", "revisions": [ { "version": "v2", "updated": "2006-02-13T16:34:45.000Z" } ], "analyses": { "keywords": [ "mean euler characteristic", "mean betti numbers", "arbitrary spin", "ising model", "intensive monte carlo simulations" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Mechanics: Theory and Experiment", "year": 2006, "month": "Mar", "volume": 2006, "number": 3, "pages": 3011 }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006JSMTE..03..011B" } } }