{ "id": "cond-mat/0511540", "version": "v1", "published": "2005-11-22T12:27:08.000Z", "updated": "2005-11-22T12:27:08.000Z", "title": "Zero Temperature Hysteresis in Random Field Ising Model on Bethe Lattices: approach to mean field behavior with increasing coordination number z", "authors": [ "Xavier Illa", "Prabodh Shukla", "Eduard Vives" ], "comment": "4 pages, 4 figures, Submitted to PRB", "journal": "Phys. Rev. B 73, 092414 (2006)", "doi": "10.1103/PhysRevB.73.092414", "categories": [ "cond-mat.dis-nn", "cond-mat.stat-mech" ], "abstract": "We consider the analytic solution of the zero temperature hysteresis in the random field Ising model on a Bethe lattice of coordination number $z$, and study how it approaches the mean field solution in the limit z-> \\infty. New analytical results concerning the energy of the system along the hysteresis loop and first order reversal curves (FORC diagrams) are also presented.", "revisions": [ { "version": "v1", "updated": "2005-11-22T12:27:08.000Z" } ], "analyses": { "keywords": [ "random field ising model", "zero temperature hysteresis", "mean field behavior", "increasing coordination number", "bethe lattice" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. B" }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }