{ "id": "cond-mat/0509172", "version": "v2", "published": "2005-09-07T08:55:01.000Z", "updated": "2006-01-11T09:59:33.000Z", "title": "Current and universal scaling in anomalous transport", "authors": [ "I. Goychuk", "E. Heinsalu", "M. Patriarca", "G. Schmid", "P. Hanggi" ], "journal": "Phys. Rev. E 73, 020101 (2006) (Rapid Communication)", "doi": "10.1103/PhysRevE.73.020101", "categories": [ "cond-mat.stat-mech" ], "abstract": "Anomalous transport in tilted periodic potentials is investigated within the framework of the fractional Fokker-Planck dynamics and the underlying continuous time random walk. The analytical solution for the stationary, anomalous current is obtained in closed form. We derive a universal scaling law for anomalous diffusion occurring in tilted periodic potentials. This scaling relation is corroborated with precise numerical studies covering wide parameter regimes and different shapes for the periodic potential, being either symmetric or ratchet-like ones.", "revisions": [ { "version": "v2", "updated": "2006-01-11T09:59:33.000Z" } ], "analyses": { "keywords": [ "anomalous transport", "universal scaling", "continuous time random walk", "numerical studies covering wide", "tilted periodic potentials" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }