{ "id": "cond-mat/0509066", "version": "v3", "published": "2005-09-02T18:52:19.000Z", "updated": "2006-03-21T18:06:30.000Z", "title": "An alternative order parameter for the 4-state Potts model", "authors": [ "H. A. Fernandes", "E. Arashiro", "A. A. Caparica", "J. R. Drugowich de Felicio" ], "comment": "6 pages, 6 figures", "journal": "Physica A, 366, 255 (2006)", "doi": "10.1016/j.physa.2006.02.007", "categories": [ "cond-mat.stat-mech" ], "abstract": "We have investigated the dynamic critical behavior of the two-dimensional 4-state Potts model using an alternative order parameter first used by Vanderzande [J. Phys. A: Math. Gen. \\textbf{20}, L549 (1987)] in the study of the Z(5) model. We have estimated the global persistence exponent $\\theta_g$ by following the time evolution of the probability $P(t)$ that the considered order parameter does not change its sign up to time $t$. We have also obtained the critical exponents $\\theta$, $z$, $\\nu$, and $\\beta$ using this alternative definition of the order parameter and our results are in complete agreement with available values found in literature.", "revisions": [ { "version": "v3", "updated": "2006-03-21T18:06:30.000Z" } ], "analyses": { "keywords": [ "potts model", "alternative order parameter first", "global persistence exponent", "dynamic critical behavior", "time evolution" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }