{ "id": "cond-mat/0411160", "version": "v2", "published": "2004-11-05T21:26:53.000Z", "updated": "2005-09-09T14:35:00.000Z", "title": "Universal scaling of distances in complex networks", "authors": [ "Janusz A. Holyst", "Julian Sienkiewicz", "Agata Fronczak", "Piotr Fronczak", "Krzysztof Suchecki" ], "comment": "4 pages, 3 figures, 1 table", "journal": "Phys. Rev. E 72, 026108 (2005)", "doi": "10.1103/PhysRevE.72.026108", "categories": [ "cond-mat.dis-nn", "cond-mat.stat-mech" ], "abstract": "Universal scaling of distances between vertices of Erdos-Renyi random graphs, scale-free Barabasi-Albert models, science collaboration networks, biological networks, Internet Autonomous Systems and public transport networks are observed. A mean distance between two nodes of degrees k_i and k_j equals to =A-B log(k_i k_j). The scaling is valid over several decades. A simple theory for the appearance of this scaling is presented. Parameters A and B depend on the mean value of a node degree _nn calculated for the nearest neighbors and on network clustering coefficients.", "revisions": [ { "version": "v2", "updated": "2005-09-09T14:35:00.000Z" } ], "analyses": { "keywords": [ "universal scaling", "complex networks", "scale-free barabasi-albert models", "science collaboration networks", "erdos-renyi random graphs" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }