{ "id": "cond-mat/0405091", "version": "v1", "published": "2004-05-05T15:08:07.000Z", "updated": "2004-05-05T15:08:07.000Z", "title": "Lévy flights as subordination process: first passage times", "authors": [ "Igor M. Sokolov", "R. Metzler" ], "comment": "4 pages, RevTeX", "categories": [ "cond-mat.stat-mech" ], "abstract": "We obtain the first passage time density for a L\\'{e}vy flight random process from a subordination scheme. By this method, we infer the asymptotic behavior directly from the Brownian solution and the Sparre Andersen theorem, avoiding explicit reference to the fractional diffusion equation. Our results corroborate recent findings for Markovian L\\'{e}vy flights and generalize to broad waiting times.", "revisions": [ { "version": "v1", "updated": "2004-05-05T15:08:07.000Z" } ], "analyses": { "keywords": [ "lévy flights", "subordination process", "first passage time density", "sparre andersen theorem", "flight random process" ], "note": { "typesetting": "RevTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004cond.mat..5091S" } } }