{ "id": "cond-mat/0403453", "version": "v1", "published": "2004-03-18T03:19:24.000Z", "updated": "2004-03-18T03:19:24.000Z", "title": "Unicyclic Components in Random Graphs", "authors": [ "E. Ben-Naim", "P. L. Krapivsky" ], "comment": "4 pages, 2 figures", "journal": "J. Phys. A 37, L189 (2004)", "doi": "10.1088/0305-4470/37/18/L01", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn", "cs.DS", "math.PR" ], "abstract": "The distribution of unicyclic components in a random graph is obtained analytically. The number of unicyclic components of a given size approaches a self-similar form in the vicinity of the gelation transition. At the gelation point, this distribution decays algebraically, U_k ~ 1/(4k) for k>>1. As a result, the total number of unicyclic components grows logarithmically with the system size.", "revisions": [ { "version": "v1", "updated": "2004-03-18T03:19:24.000Z" } ], "analyses": { "keywords": [ "random graph", "self-similar form", "gelation transition", "gelation point", "total number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }