{ "id": "cond-mat/0402238", "version": "v1", "published": "2004-02-09T15:00:51.000Z", "updated": "2004-02-09T15:00:51.000Z", "title": "The critical Casimir force and its fluctuations in lattice spin models: exact and Monte Carlo results", "authors": [ "Daniel Dantchev", "Michael Krech" ], "comment": "21 pages, 7 figures, to appear in PRE", "journal": "Phys.Rev. E69 (2004) 046119", "doi": "10.1103/PhysRevE.69.046119", "categories": [ "cond-mat.stat-mech", "hep-th", "math-ph", "math.MP" ], "abstract": "We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature $T_c$. We verify our arguments via exact results for the force in the two-dimensional Ising model, $d$-dimensional Gaussian and mean spherical model with $2=k_b T_c (d-1)\\Delta/(L/a)^{d}$, where $L$ is the distance between the plates and $\\Delta$ is the (universal) Casimir amplitude.", "revisions": [ { "version": "v1", "updated": "2004-02-09T15:00:51.000Z" } ], "analyses": { "keywords": [ "monte carlo results", "critical casimir force", "finite lattice spin models", "exact results", "fluctuations" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "inspire": 644202 } } }