{ "id": "cond-mat/0307525", "version": "v2", "published": "2003-07-22T08:28:30.000Z", "updated": "2004-03-15T13:43:40.000Z", "title": "A renormalization approach for the 2D Anderson model at the band edge: Scaling of the localization volume", "authors": [ "Stefanie Russ" ], "doi": "10.1103/PhysRevB.70.174201", "categories": [ "cond-mat.dis-nn", "cond-mat.stat-mech" ], "abstract": "We study the localization volumes $V$ (participation ratio) of electronic wave functions in the 2d-Anderson model with diagonal disorder. Using a renormalization procedure, we show that at the band edges, i.e. for energies $E\\approx \\pm 4$, $V$ is inversely proportional to the variance $\\var$ of the site potentials. Using scaling arguments, we show that in the neighborhood of $E=\\pm 4$, $V$ scales as $V=\\var^{-1}g((4-\\ve E\\ve)/\\var)$ with the scaling function $g(x)$. Numerical simulations confirm this scaling ansatz.", "revisions": [ { "version": "v2", "updated": "2004-03-15T13:43:40.000Z" } ], "analyses": { "keywords": [ "2d anderson model", "localization volume", "band edge", "renormalization approach", "electronic wave functions" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. B" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }