{ "id": "cond-mat/0307139", "version": "v2", "published": "2003-07-07T13:33:35.000Z", "updated": "2004-03-04T19:17:58.000Z", "title": "Minimal Stochastic Model for Fermi's Acceleration", "authors": [ "Freddy Bouchet", "Fabio Cecconi", "Angelo Vulpiani" ], "comment": "RevTeX4, 4 pages, 2 eps-figures (minor revision)", "journal": "Phys. Rev. Lett., vol.92, 040601 (2004)", "doi": "10.1103/PhysRevLett.92.040601", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn", "nlin.CD" ], "abstract": "We introduce a simple stochastic system able to generate anomalous diffusion both for position and velocity. The model represents a viable description of the Fermi's acceleration mechanism and it is amenable to analytical treatment through a linear Boltzmann equation. The asymptotic probability distribution functions (PDF) for velocity and position are explicitly derived. The diffusion process is highly non-Gaussian and the time growth of moments is characterized by only two exponents $\\nu_x$ and $\\nu_v$. The diffusion process is anomalous (non Gaussian) but with a defined scaling properties i.e. $P(|{\\bf x}|,t) = 1/t^{\\nu_x}F_x(|{\\bf x}|/t^{\\nu_x})$ and similarly for velocity.", "revisions": [ { "version": "v2", "updated": "2004-03-04T19:17:58.000Z" } ], "analyses": { "keywords": [ "minimal stochastic model", "diffusion process", "asymptotic probability distribution functions", "fermis acceleration mechanism", "simple stochastic system" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "RevTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }