{ "id": "cond-mat/0301054", "version": "v1", "published": "2003-01-06T17:04:39.000Z", "updated": "2003-01-06T17:04:39.000Z", "title": "Avalanche exponents and corrections to scaling for a stochastic sandpile", "authors": [ "Ronald Dickman", "J. M. M. Campelo" ], "comment": "8 pages, 4 figures", "doi": "10.1103/PhysRevE.67.066111", "categories": [ "cond-mat.stat-mech", "cond-mat.soft" ], "abstract": "We study distributions of dissipative and nondissipative avalanches in Manna's stochastic sandpile, in one and two dimensions. Our results lead to the following conclusions: (1) avalanche distributions, in general, do not follow simple power laws, but rather have the form $P(s) \\sim s^{-\\tau_s} (\\ln s)^{\\gamma} f(s/s_c)$, with $f$ a cutoff function; (2) the exponents for sizes of dissipative avalanches in two dimensions differ markedly from the corresponding values for the Bak-Tang-Wiesenfeld (BTW) model, implying that the BTW and Manna models belong to distinct universality classes; (3) dissipative avalanche distributions obey finite size scaling, unlike in the BTW model.", "revisions": [ { "version": "v1", "updated": "2003-01-06T17:04:39.000Z" } ], "analyses": { "keywords": [ "avalanche exponents", "stochastic sandpile", "obey finite size scaling", "corrections", "dissipative avalanche distributions obey finite" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }