{ "id": "cond-mat/0211403", "version": "v2", "published": "2002-11-19T10:44:36.000Z", "updated": "2002-11-22T10:03:18.000Z", "title": "Vertex-cover in random graphs with small connectivity: an exact solution", "authors": [ "E. Caglioti" ], "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "This paper has been withdrawn by the author, due to the fact that the main result in it has already been obtained in [1] for any c < e, see also [2] and [3]. Moreover the formula which gives the minimal vertex-cover in a tree (see the abstract) has already been derived in [4]. I thank M. Bauer, O. Golinelli, F. Ricci-Tersenghi, G. Semerjian and M. Weigt for having brought to my attention [1] and M.B. and O.G. for [4]. [1] M. Bauer and O. Golinelli, Eur. Phys. J. B 24, 339-352 (2001); [2] R. M. Karp and M. Sipser, Proc. 22nd IEEE Symposium on Foundations of Computing,(1981), 364-375; [3] J. Aronson, A. Frieze, and B.G. Pittel, Random Structures and Algorithms 12 (1998) 111-177; [4] M. Bauer, O. Golinelli, Journal of Integer Sequences, Vol 3, (2000).", "revisions": [ { "version": "v2", "updated": "2002-11-22T10:03:18.000Z" } ], "analyses": { "keywords": [ "exact solution", "small connectivity", "random graphs", "22nd ieee symposium", "integer sequences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }