{ "id": "cond-mat/0210501", "version": "v1", "published": "2002-10-22T17:05:34.000Z", "updated": "2002-10-22T17:05:34.000Z", "title": "Ordering of Random Walks: The Leader and the Laggard", "authors": [ "D. ben-Avraham", "B. M. Johnson", "C. A. Monaco", "P. L. Krapivsky", "S. Redner" ], "comment": "7 pages, 4 figures, 2-column revtex 4 format", "journal": "J. Phys. A 36, 1789-1799 (2003)", "doi": "10.1088/0305-4470/36/7/301", "categories": [ "cond-mat.stat-mech" ], "abstract": "We investigate two complementary problems related to maintaining the relative positions of N random walks on the line: (i) the leader problem, that is, the probability {\\cal L}_N(t) that the leftmost particle remains the leftmost as a function of time and (ii) the laggard problem, the probability {\\cal R}_N(t) that the rightmost particle never becomes the leftmost. We map these ordering problems onto an equivalent (N-1)-dimensional electrostatic problem. From this construction we obtain a very accurate estimate for {\\cal L}_N(t) for N=4, the first case that is not exactly soluble: {\\cal L}_4(t) ~ t^{-\\beta_4}, with \\beta_4=0.91342(8). The probability of being the laggard also decays algebraically, {\\cal R}_N(t) ~ t^{-\\gamma_N}; we derive \\gamma_2=1/2, \\gamma_3=3/8, and argue that \\gamma_N--> ln N/N$ as N-->oo.", "revisions": [ { "version": "v1", "updated": "2002-10-22T17:05:34.000Z" } ], "analyses": { "keywords": [ "random walks", "probability", "leftmost particle remains", "first case", "leader problem" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2003, "month": "Feb", "volume": 36, "number": 7, "pages": 1789 }, "note": { "typesetting": "RevTeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003JPhA...36.1789B" } } }