{ "id": "cond-mat/0203602", "version": "v1", "published": "2002-03-29T00:51:06.000Z", "updated": "2002-03-29T00:51:06.000Z", "title": "Fractional Dynamical Behavior in Quantum Brownian Motion", "authors": [ "Kyungsik Kim", "Y. S. Kong", "M. K. Yum", "J. T. Kim" ], "comment": "9 pages, 3 figures, Latex", "categories": [ "cond-mat.stat-mech" ], "abstract": "The dynamical behavior for a quantum Brownian particle is investigated under a random potential of the fractional iterative map on a one-dimensional lattice. For our case, the quantum expectation values can be obtained numerically from the wave function of the fractional Schr$\\ddot{o}$dinger equation. Particularly, the square of mean displacement which is ensemble-averaged over our configuration is found to be proportional approximately to $t^{\\delta}$ in the long time limit, where $\\delta$ $=$ $0.96 \\pm 0.02$. The power-law behavior with scaling exponents $\\epsilon$ $=$ $0.98 \\pm 0.02$ and $\\theta$ $=$ $ 0.51 \\pm 0.01$ is estimated for $ \\bar {{< p(t) >}^2}$ and $ \\bar {{< f(t) >}^2}$, and the result presented is compared with other numerical calculations.", "revisions": [ { "version": "v1", "updated": "2002-03-29T00:51:06.000Z" } ], "analyses": { "keywords": [ "quantum brownian motion", "fractional dynamical behavior", "quantum brownian particle", "long time limit", "quantum expectation values" ], "note": { "typesetting": "LaTeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002cond.mat..3602K" } } }