{ "id": "cond-mat/0203134", "version": "v1", "published": "2002-03-06T20:53:33.000Z", "updated": "2002-03-06T20:53:33.000Z", "title": "Multifractality at the spin quantum Hall transition", "authors": [ "F. Evers", "A. Mildenberger", "A. D. Mirlin" ], "comment": "4 pages, 3 figures", "journal": "Phys. Rev. B 67, 041303(R) (2003).", "doi": "10.1103/PhysRevB.67.041303", "categories": [ "cond-mat.mes-hall", "cond-mat.dis-nn" ], "abstract": "Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numerically and analytically (via mapping onto the classical percolation). It is shown that the index $\\eta$ characterizing the decay of wave function correlations is equal to 1/4, at variance with the $r^{-1/2}$ decay of the diffusion propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close-to-parabolic, $\\Delta_q\\simeq q(1-q)/8$ and $X_q\\simeq q(3-q)/4$.", "revisions": [ { "version": "v1", "updated": "2002-03-06T20:53:33.000Z" } ], "analyses": { "keywords": [ "spin quantum hall transition", "wave function correlations", "two-point conductances", "diffusion propagator", "multifractality spectra" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. B" }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }