{ "id": "cond-mat/0112310", "version": "v1", "published": "2001-12-17T14:23:52.000Z", "updated": "2001-12-17T14:23:52.000Z", "title": "Violation of finite-size scaling for the free energy near criticality", "authors": [ "X. S. Chen", "V. Dohm" ], "comment": "4 pages, no figure", "categories": [ "cond-mat.stat-mech" ], "abstract": "The singular part of the finite-size free energy density $f_s$ of the O($n$) symmetric $\\phi^4$ field theory is calculated for confined geometries of linear size L with periodic boundary conditions in the large-N limit and with Dirichlet boundary conditions in one-loop order. We find that both a sharp cutoff and a subleading long-range interaction cause a non-universal L dependence of $f_s$ near $T_c$. For film geometry this implies a non-universal critical Casimir force with an algebraic L dependence that dominates the exponential finite-size scaling behavior above $T_c$ for both periodic and Dirichlet boundary conditions.", "revisions": [ { "version": "v1", "updated": "2001-12-17T14:23:52.000Z" } ], "analyses": { "keywords": [ "dirichlet boundary conditions", "criticality", "finite-size free energy density", "periodic boundary conditions", "non-universal critical casimir force" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001cond.mat.12310C" } } }