{ "id": "cond-mat/0110286", "version": "v1", "published": "2001-10-15T08:20:34.000Z", "updated": "2001-10-15T08:20:34.000Z", "title": "New order parameters in the Potts model on a Cayley tree", "authors": [ "F. Wagner", "D. Grensing", "J. Heide" ], "comment": "16 pages TeX, 5 figures PostScript", "doi": "10.1088/0305-4470/34/50/308", "categories": [ "cond-mat.stat-mech" ], "abstract": "For the $q-$state Potts model new order parameters projecting on a group of spins instead of a single spin are introduced. On a Cayley tree this allows the physical interpretation of the Potts model at noninteger values q of the number of states. The model can be solved recursively. This recursion exhibits chaotic behaviour changing qualitatively at critical values of $q_0$ . Using an additional order parameter belonging to a group of zero extrapolated size the additional ordering is related to a percolation problem. This percolation distinguishes different phases and explains the critical indices of percolation class occuring at the Peierls temperature.", "revisions": [ { "version": "v1", "updated": "2001-10-15T08:20:34.000Z" } ], "analyses": { "keywords": [ "cayley tree", "state potts model", "noninteger values", "chaotic behaviour", "peierls temperature" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }