{ "id": "cond-mat/0109443", "version": "v1", "published": "2001-09-24T21:59:06.000Z", "updated": "2001-09-24T21:59:06.000Z", "title": "Growth Exponent in the Domany-Kinzel Cellular Automaton", "authors": [ "A. P. F. Atman", "J. G. Moreira" ], "comment": "13 pages, 6 figures", "journal": "Eur. Phys. J. B, 16 (2000) pp. 501-505", "categories": [ "cond-mat.stat-mech" ], "abstract": "In a roughening process, the growth exponent $\\beta$ describes how the roughness $w$ grows with the time $t$: $w\\sim t^{\\beta}$. We determine the exponent $\\beta$ of a growth process generated by the spatiotemporal patterns of the one dimensional Domany-Kinzel cellular automaton. The values obtained for $\\beta$ shows a cusp at the frozen/active transition which permits determination of the transition line. The $\\beta$ value at the transition depends on the scheme used: symmetric ($\\beta \\sim 0.83$) or non-symmetric ($\\beta \\sim 0.61$). Using damage spreading ideas, we also determine the active/chaotic transition line; this line depends on how the replicas are updated.", "revisions": [ { "version": "v1", "updated": "2001-09-24T21:59:06.000Z" } ], "analyses": { "subjects": [ "05.10.-a", "02.50.-r" ], "keywords": [ "growth exponent", "dimensional domany-kinzel cellular automaton", "active/chaotic transition line", "spatiotemporal patterns", "line depends" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s100510070209", "journal": "European Physical Journal B", "year": 2000, "month": "Jul", "volume": 16, "number": 3, "pages": 501 }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000EPJB...16..501A" } } }