{ "id": "cond-mat/0108110", "version": "v1", "published": "2001-08-07T11:08:59.000Z", "updated": "2001-08-07T11:08:59.000Z", "title": "Universality of the critical conductance distribution in various dimensions", "authors": [ "Igor Travenec", "Peter Markos" ], "journal": "Phys. Rev. B 65 (2002) 113109", "doi": "10.1103/PhysRevB.65.113109", "categories": [ "cond-mat.dis-nn" ], "abstract": "We study numerically the metal - insulator transition in the Anderson model on various lattices with dimension $2 < d \\le 4$ (bifractals and Euclidian lattices). The critical exponent $\\nu$ and the critical conductance distribution are calculated. We confirm that $\\nu$ depends only on the {\\it spectral} dimension. The other parameters - critical disorder, critical conductance distribution and conductance cummulants - depend also on lattice topology. Thus only qualitative comparison with theoretical formulae for dimension dependence of the cummulants is possible.", "revisions": [ { "version": "v1", "updated": "2001-08-07T11:08:59.000Z" } ], "analyses": { "keywords": [ "critical conductance distribution", "universality", "anderson model", "euclidian lattices", "insulator transition" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. B" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }