{ "id": "cond-mat/0108041", "version": "v2", "published": "2001-08-02T14:06:11.000Z", "updated": "2001-10-23T12:03:36.000Z", "title": "Interacting Bose Gas in an Optical Lattice", "authors": [ "K. Ziegler" ], "comment": "14 pages, 1 figure", "journal": "Journ. Low Temp. Phys. 126, 1431 (2002)", "categories": [ "cond-mat.stat-mech" ], "abstract": "A grand canonical system of hard-core bosons in an optical lattice is considered. The bosons can occupy randomly $N$ equivalent states at each lattice site. The limit $N\\to\\infty$ is solved exactly in terms of a saddle-point integration, representing a weakly-interacting Bose gas. At T=0 there is only a condensate in the limit $N\\to\\infty$. Corrections in 1/N increase the total density of bosons but suppress the condensate. This indicates a depletion of the condensate due to increasing interaction at finite values of N.", "revisions": [ { "version": "v2", "updated": "2001-10-23T12:03:36.000Z" } ], "analyses": { "keywords": [ "optical lattice", "condensate", "equivalent states", "lattice site", "grand canonical system" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "Low Temp. Phys." }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001cond.mat..8041Z" } } }