{ "id": "cond-mat/0107225", "version": "v3", "published": "2001-07-11T10:52:48.000Z", "updated": "2001-07-25T09:06:24.000Z", "title": "On the Finite Size Scaling in Disordered Systems", "authors": [ "H. Chamati", "E. Korutcheva", "N. S. Tonchev" ], "comment": "21 pages, 2 figures, submitted to the Physcal Review E", "doi": "10.1103/PhysRevE.65.026129", "categories": [ "cond-mat.stat-mech" ], "abstract": "The critical behavior of a quenched random hypercubic sample of linear size $L$ is considered, within the ``random-$T_{c}$'' field-theoretical mode, by using the renormalization group method. A finite-size scaling behavior is established and analyzed near the upper critical dimension $d=4-\\epsilon$ and some universal results are obtained. The problem of self-averaging is clarified for different critical regimes.", "revisions": [ { "version": "v3", "updated": "2001-07-25T09:06:24.000Z" } ], "analyses": { "keywords": [ "finite size scaling", "disordered systems", "quenched random hypercubic sample", "renormalization group method", "upper critical dimension" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }