{ "id": "cond-mat/0106448", "version": "v2", "published": "2001-06-21T18:44:12.000Z", "updated": "2001-11-17T01:14:32.000Z", "title": "Zero-bias anomaly in disordered wires", "authors": [ "E. G. Mishchenko", "A. V. Andreev", "L. I. Glazman" ], "comment": "5 pages, 1 figure", "journal": "Phys. Rev. Lett. 87, 246801 (2001).", "doi": "10.1103/PhysRevLett.87.246801", "categories": [ "cond-mat.mes-hall" ], "abstract": "We calculate the low-energy tunneling density of states $\\nu(\\epsilon, T)$ of an $N$-channel disordered wire, taking into account the electron-electron interaction non-perturbatively. The finite scattering rate $1/\\tau$ results in a crossover from the Luttinger liquid behavior at higher energies, $\\nu\\propto\\epsilon^\\alpha$, to the exponential dependence $\\nu (\\epsilon, T=0)\\propto \\exp{(-\\epsilon^*/\\epsilon)}$ at low energies, where $\\epsilon^*\\propto 1/(N \\tau)$. At finite temperature $T$, the tunneling density of states depends on the energy through the dimensionless variable $\\epsilon/\\sqrt{\\epsilon^* T}$. At the Fermi level $\\nu(\\epsilon=0,T) \\propto \\exp (-\\sqrt{\\epsilon^*/T})$.", "revisions": [ { "version": "v2", "updated": "2001-11-17T01:14:32.000Z" } ], "analyses": { "keywords": [ "zero-bias anomaly", "luttinger liquid behavior", "low-energy tunneling density", "fermi level", "electron-electron interaction" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }