{ "id": "cond-mat/0106158", "version": "v1", "published": "2001-06-08T13:10:35.000Z", "updated": "2001-06-08T13:10:35.000Z", "title": "Exclusion Statistics of Composite Fermions", "authors": [ "Piotr Sitko" ], "comment": "4 pages (in Latex), proceedings for the EP2DS14 Conference", "doi": "10.1016/S1386-9477(01)00258-2", "categories": [ "cond-mat.mes-hall" ], "abstract": "The exclusion statistics parameter of composite fermions is determined as an odd number ($\\alpha=3$, 5, ...). The statistics of composite fermion excitations at $\\nu= \\frac{n}{2pn+1}$ is rederived as $\\alpha_{qe}^{CF}=1+\\frac{2p}{2pn+1}$, $\\alpha_{qh}^{CF}=1-\\frac{2p}{2pn+1}$. The duality $\\frac{1}{\\alpha_{qe}(n,2p)}=\\alpha_{qh}(n+1,2p)$ is found. The distribution function for $\\alpha=3$ is obtained.", "revisions": [ { "version": "v1", "updated": "2001-06-08T13:10:35.000Z" } ], "analyses": { "keywords": [ "composite fermion excitations", "exclusion statistics parameter", "odd number", "distribution function" ], "tags": [ "conference paper", "journal article" ], "note": { "typesetting": "LaTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }