{ "id": "cond-mat/0105599", "version": "v1", "published": "2001-05-30T18:56:46.000Z", "updated": "2001-05-30T18:56:46.000Z", "title": "1/f Noise and Extreme Value Statistics", "authors": [ "T. Antal", "M. Droz", "G. Gyorgyi", "Z. Racz" ], "comment": "4 pages, 4 postscript figures, RevTex", "journal": "Phys.Rev.Lett. 87, 240601 (2001)", "doi": "10.1103/PhysRevLett.87.240601", "categories": [ "cond-mat.stat-mech" ], "abstract": "We study the finite-size scaling of the roughness of signals in systems displaying Gaussian 1/f power spectra. It is found that one of the extreme value distributions (Gumbel distribution) emerges as the scaling function when the boundary conditions are periodic. We provide a realistic example of periodic 1/f noise, and demonstrate by simulations that the Gumbel distribution is a good approximation for the case of nonperiodic boundary conditions as well. Experiments on voltage fluctuations in GaAs films are analyzed and excellent agreement is found with the theory.", "revisions": [ { "version": "v1", "updated": "2001-05-30T18:56:46.000Z" } ], "analyses": { "keywords": [ "extreme value statistics", "gumbel distribution", "extreme value distributions", "nonperiodic boundary conditions", "realistic example" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "RevTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }