{ "id": "cond-mat/0012502", "version": "v1", "published": "2000-12-28T21:41:06.000Z", "updated": "2000-12-28T21:41:06.000Z", "title": "A nonextensive critical phenomenon scenario for quantum entanglement", "authors": [ "Constantino Tsallis", "Pedro W. Lamberti", "Domingo Prato" ], "comment": "To appear in Physica A, Proceedings of the IUPAP Workshop on New Trends on Fractal Aspects of Complex Systems (16 - 20 October 2000, Maceio-AL, Brazil), ed. M.L. Lyra (Elsevier, Amsterdam, 2001); 8 PS figures", "doi": "10.1016/S0378-4371(01)00070-X", "categories": [ "cond-mat.stat-mech" ], "abstract": "We discuss the paradigmatic bipartite spin-1/2 system having the probabilities $\\frac{1+3x}{4}$ of being in the Einstein-Podolsky-Rosen fully entangled state $|\\Psi^-$$> \\equiv \\frac{1}{\\sqrt 2}(|$$\\uparrow>_A|$$\\downarrow>_B$$-|$$\\downarrow>_A|$$\\uparrow>_B)$ and $\\frac{3(1-x)}{4}$ of being orthogonal. This system is known to be separable if and only if $x\\le1/3$ (Peres criterion). This critical value has been recently recovered by Abe and Rajagopal through the use of the nonextensive entropic form $S_q \\equiv \\frac{1- Tr \\rho^q}{q-1} (q \\in \\cal{R}; $$S_1$$= -$ $Tr$ $ \\rho \\ln \\rho)$ which has enabled a current generalization of Boltzmann-Gibbs statistical mechanics. This result has been enrichened by Lloyd, Baranger and one of the present authors by proposing a critical-phenomenon-like scenario for quantum entanglement. Here we further illustrate and discuss this scenario through the calculation of some relevant quantities.", "revisions": [ { "version": "v1", "updated": "2000-12-28T21:41:06.000Z" } ], "analyses": { "keywords": [ "nonextensive critical phenomenon scenario", "quantum entanglement", "paradigmatic bipartite", "einstein-podolsky-rosen fully entangled state", "current generalization" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }