{ "id": "cond-mat/0004161", "version": "v2", "published": "2000-04-11T22:12:44.000Z", "updated": "2000-04-14T21:30:04.000Z", "title": "Ground State Entropy of the Potts Antiferromagnet on Strips of the Square Lattice", "authors": [ "Shu-Chiuan Chang", "Robert Shrock" ], "comment": "37 pages, latex, 4 encapsulated postscript figures", "journal": "Physica A290 (2001) 402-430", "doi": "10.1016/S0378-4371(00)00457-X", "categories": [ "cond-mat.stat-mech", "hep-lat", "math-ph", "math.MP" ], "abstract": "We present exact solutions for the zero-temperature partition function (chromatic polynomial $P$) and the ground state degeneracy per site $W$ (= exponent of the ground-state entropy) for the $q$-state Potts antiferromagnet on strips of the square lattice of width $L_y$ vertices and arbitrarily great length $L_x$ vertices. The specific solutions are for (a) $L_y=4$, $(FBC_y,PBC_x)$ (cyclic); (b) $L_y=4$, $(FBC_y,TPBC_x)$ (M\\\"obius); (c) $L_y=5,6$, $(PBC_y,FBC_x)$ (cylindrical); and (d) $L_y=5$, $(FBC_y,FBC_x)$ (open), where $FBC$, $PBC$, and $TPBC$ denote free, periodic, and twisted periodic boundary conditions, respectively. In the $L_x \\to \\infty$ limit of each strip we discuss the analytic structure of $W$ in the complex $q$ plane. The respective $W$ functions are evaluated numerically for various values of $q$. Several inferences are presented for the chromatic polynomials and analytic structure of $W$ for lattice strips with arbitrarily great $L_y$. The absence of a nonpathological $L_x \\to \\infty$ limit for real nonintegral $q$ in the interval $0 < q < 3$ ($0 < q < 4$) for strips of the square (triangular) lattice is discussed.", "revisions": [ { "version": "v2", "updated": "2000-04-14T21:30:04.000Z" } ], "analyses": { "keywords": [ "ground state entropy", "square lattice", "analytic structure", "chromatic polynomial", "ground state degeneracy" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "inspire": 526347 } } }