{ "id": "cond-mat/0002084", "version": "v1", "published": "2000-02-06T23:38:24.000Z", "updated": "2000-02-06T23:38:24.000Z", "title": "One-Dimensional Stochastic Lévy-Lorentz Gas", "authors": [ "E. Barkai", "V. Fleurov", "J. Klafter" ], "comment": "7 pages, 7 figures (to appear in PRE)", "doi": "10.1103/PhysRevE.61.1164", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "We introduce a L\\'evy-Lorentz gas in which a light particle is scattered by static point scatterers arranged on a line. We investigate the case where the intervals between scatterers $\\{\\xi_i \\}$ are independent random variables identically distributed according to the probability density function $\\mu(\\xi )\\sim \\xi^{-(1 + \\gamma)}$. We show that under certain conditions the mean square displacement of the particle obeys $ \\ge C t^{3 - \\gamma}$ for $1 < \\gamma < 2$. This behavior is compatible with a renewal L\\'evy walk scheme. We discuss the importance of rare events in the proper characterization of the diffusion process.", "revisions": [ { "version": "v1", "updated": "2000-02-06T23:38:24.000Z" } ], "analyses": { "keywords": [ "one-dimensional stochastic lévy-lorentz gas", "random variables", "renewal levy walk scheme", "probability density function", "static point scatterers" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }