{ "id": "2506.19098", "version": "v1", "published": "2025-06-23T20:20:21.000Z", "updated": "2025-06-23T20:20:21.000Z", "title": "Dual Thurston norm of Euler classes of foliations on negative curvature 3-Manifolds", "authors": [ "Dmitry V. Bolotov" ], "comment": "arXiv admin note: text overlap with arXiv:2212.06807", "categories": [ "math.GT" ], "abstract": "In this paper we give an upper bound estimate on the dual Thurston norm of the Euler class of an arbitrary smooth foliation $\\mathcal{F}$ of dimension one defined on a closed three-dimensional orientable manifold $M^3$ of negative curvature, which depends on the constants bounded the injectivity radius $inj(M^3)$, the volume $Vol(M^3)$, sectional curvature of the manifold $M^3$ and the mean curvature modulus of the leaves of the foliation $\\mathcal{F}$.", "revisions": [ { "version": "v1", "updated": "2025-06-23T20:20:21.000Z" } ], "analyses": { "keywords": [ "dual thurston norm", "euler class", "negative curvature", "arbitrary smooth foliation", "upper bound estimate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }