{ "id": "2506.17393", "version": "v1", "published": "2025-06-20T18:00:09.000Z", "updated": "2025-06-20T18:00:09.000Z", "title": "Extensions of Abelian Schemes and the Additive Group", "authors": [ "Gabriel Ribeiro", "Zev Rosengarten" ], "comment": "40 pages, comments appreciated", "categories": [ "math.AG", "math.NT" ], "abstract": "We compute extension sheaves of abelian schemes and of the additive group by the multiplicative group in the fppf topology. Our main results include a generalized and streamlined proof of the Barsotti--Weil formula, the vanishing of $\\underline{\\operatorname{Ext}}^2(A,\\mathbb{G}_m)$ for an abelian scheme $A$ over a general base, and a description of $\\underline{\\operatorname{Ext}}^1(\\mathbb{G}_a,\\mathbb{G}_m)$ in characteristic zero.", "revisions": [ { "version": "v1", "updated": "2025-06-20T18:00:09.000Z" } ], "analyses": { "keywords": [ "abelian scheme", "additive group", "extension sheaves", "barsotti-weil formula", "fppf topology" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }