{ "id": "2506.16766", "version": "v1", "published": "2025-06-20T05:59:36.000Z", "updated": "2025-06-20T05:59:36.000Z", "title": "On the error term of the fourth moment of the Riemann zeta-function", "authors": [ "Neea Palojärvi", "Tim Trudgian" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "We examine the size of $E_{2}(T)$, the error term in the asymptotic formula for $\\int_{0}^{T} |\\zeta(1/2 + it)|^{4}\\, dt$ where $\\zeta(s)$ is the Riemann zeta-function. We make improvements in the powers of $\\log T$ in the known bounds for $E_{2}(T)$ and $\\int_{0}^{T} E_{2}(t)^{2}\\, dt$. As a consequence, we obtain small logarithmic improvements for $k$th moments where $8\\leq k\\leq 12$. In particular, we make a modest improvement on the 12th power moment for $\\zeta(s)$.", "revisions": [ { "version": "v1", "updated": "2025-06-20T05:59:36.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "riemann zeta-function", "error term", "fourth moment", "12th power moment", "small logarithmic improvements" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }