{ "id": "2506.16188", "version": "v1", "published": "2025-06-19T10:07:43.000Z", "updated": "2025-06-19T10:07:43.000Z", "title": "Mutation of $n$-cotorsion pairs in extriangulated categories", "authors": [ "Huimin Chang", "Yu Liu", "Panyue Zhou" ], "comment": "21 pages", "categories": [ "math.RT", "math.CT" ], "abstract": "In this article, we introduce the notion of $n$-cotorsion pairs in extriangulated categories, which extends both the cotorsion pairs established by Nakaoka and Palu and the $n$-cotorsion pairs in triangulated categories developed by Chang and Zhou. We further prove that any mutation of an $n$-cotorsion pair remains an $n$-cotorsion pair. As applications, we provide a geometric characterization of $n$-cotorsion pairs in $n$-cluster categories of type $A_{\\infty}$, and we realize mutations of $n$-cotorsion pairs geometrically via rotations of certain configurations of $n$-admissible arcs.", "revisions": [ { "version": "v1", "updated": "2025-06-19T10:07:43.000Z" } ], "analyses": { "keywords": [ "extriangulated categories", "cotorsion pair remains", "geometric characterization", "cluster categories", "applications" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }