{ "id": "2505.11220", "version": "v1", "published": "2025-05-16T13:15:45.000Z", "updated": "2025-05-16T13:15:45.000Z", "title": "Singularity Categories of Bäckström Orders", "authors": [ "Hongrui Wei" ], "comment": "24 pages", "categories": [ "math.RT" ], "abstract": "B\\\"ackstr\\\"om orders are a class of algebras over complete discrete valuation rings. Their Cohen-Macaulay representations are in correspondence with the representations of certain quivers/species by Ringel and Roggenkamp. In this paper, we give explicit descriptions of the singularity categories of B\\\"ackstr\\\"om orders via certain von Neumann regular algebras and associated bimodules. We further provide singular equivalences between B\\\"ackstr\\\"om orders and specific finite dimensional algebras with radical square zero. We also classify B\\\"ackstr\\\"om orders of finite global dimension, as well as Gorenstein, Iwanaga-Gorenstein and sg-Hom-finite B\\\"ackstr\\\"om orders.", "revisions": [ { "version": "v1", "updated": "2025-05-16T13:15:45.000Z" } ], "analyses": { "subjects": [ "16G30", "16G50", "18G25", "18G80" ], "keywords": [ "singularity categories", "bäckström orders", "specific finite dimensional algebras", "von neumann regular algebras", "complete discrete valuation rings" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }