{ "id": "2505.10520", "version": "v1", "published": "2025-05-15T17:29:18.000Z", "updated": "2025-05-15T17:29:18.000Z", "title": "Sharp integral bound of scalar curvature on $3$-manifolds", "authors": [ "Ovidiu Munteanu", "Jiaping Wang" ], "comment": "21 pages", "categories": [ "math.DG" ], "abstract": "It is shown that the integral of the scalar curvature on a geodesic ball of radius $R$ in a three-dimensional complete manifold with nonnegative Ricci curvature is bounded above by $8\\pi R$ asymptotically for large $R$ provided that the scalar curvature is bounded between two positive constants.", "revisions": [ { "version": "v1", "updated": "2025-05-15T17:29:18.000Z" } ], "analyses": { "keywords": [ "scalar curvature", "sharp integral bound", "three-dimensional complete manifold", "nonnegative ricci curvature", "geodesic ball" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }