{ "id": "2505.10051", "version": "v1", "published": "2025-05-15T07:54:59.000Z", "updated": "2025-05-15T07:54:59.000Z", "title": "On almost periodic solutions to NLS without external parameters", "authors": [ "Joackim Bernier", "Benoît Grébert" ], "categories": [ "math.AP", "math.DS" ], "abstract": "In this note, we present a result established in [BGR24] where we prove that nonlinear Schrodinger equations on the circle, without external parameters, admit plenty of infinite dimensional non resonant invariant tori, or equivalently, plenty of almost periodic solutions. Our aim is to propose an extended sketch of the proof, emphasizing the new points which have enabled us to achieve this result.", "revisions": [ { "version": "v1", "updated": "2025-05-15T07:54:59.000Z" } ], "analyses": { "keywords": [ "periodic solutions", "external parameters", "infinite dimensional non resonant invariant", "dimensional non resonant invariant tori", "nonlinear schrodinger equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }