{ "id": "2505.09575", "version": "v1", "published": "2025-05-14T17:26:08.000Z", "updated": "2025-05-14T17:26:08.000Z", "title": "Conjugacies of Expanding Skew Products on $\\mathbb{T}^n$", "authors": [ "Gregory Hemenway" ], "comment": "14 pages, 4 figures", "categories": [ "math.DS" ], "abstract": "We show that any equilibrium state for a H\\\"older potential on the model map $\\vec{x} \\mapsto d \\cdot \\vec{x} \\mod \\mathbb{Z}^n$ on $\\mathbb{T}^n$ is conjugate to Lebesgue measure for an invariant expanding skew product of degree $d$. This is a generalization of a result of McMullen to higher dimensions for equilibrium states. We use an approach developed by the author using a family of nonstationary transfer operators for an expanding skew product. We also apply a Markov partition argument to classify invariant probability measures for expanding maps on $\\mathbb{T}^n$.", "revisions": [ { "version": "v1", "updated": "2025-05-14T17:26:08.000Z" } ], "analyses": { "subjects": [ "37D35", "37C30" ], "keywords": [ "equilibrium state", "conjugacies", "invariant expanding skew product", "nonstationary transfer operators", "markov partition argument" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }