{ "id": "2505.08094", "version": "v1", "published": "2025-05-12T21:56:41.000Z", "updated": "2025-05-12T21:56:41.000Z", "title": "Invariants for $\\mathbb G_{(r)}$-modules", "authors": [ "Eric M. Friedlander" ], "categories": [ "math.RT" ], "abstract": "Following earlier work of C. Bendel, J. Petvsova, P. Sobaje, A. Suslin, and the author, we further investigate refined invariants for finite dimensional representations $M$ of infinitesimal group schemes $\\mathbb G$ over a field $k$ of characteristic $p>0$. In particular, we explore invariants of modules for Frobenius kernels $\\mathbb G_{(r)}$ of linear algebraic groups $\\mathbb G$ of exponential type. Such finite group schemes admit a refinement of support theory, including Jordan type functions and constructions of vector bundles for special classes of $\\mathbb G_{(r)}$-modules. We reformulate earlier results for $\\mathbb G_{(r)}$-modules in terms which are both more explicit and more accessible to computation, yet preserve the usual support theory for $\\mathbb G_{(r)}$-modules.", "revisions": [ { "version": "v1", "updated": "2025-05-12T21:56:41.000Z" } ], "analyses": { "subjects": [ "20G05", "14L17" ], "keywords": [ "invariants", "finite group schemes admit", "reformulate earlier results", "jordan type functions", "linear algebraic groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }