{ "id": "2505.08010", "version": "v1", "published": "2025-05-12T19:22:37.000Z", "updated": "2025-05-12T19:22:37.000Z", "title": "On equality of the $L^\\infty$ norm of the gradient under the Hausdorff and Lebesgue measure", "authors": [ "Ze-An Ng" ], "categories": [ "math.CA", "math.FA" ], "abstract": "Let $\\Omega$ be an open subset of $\\mathbb R^n$, and let $f: \\Omega \\to \\mathbb R$ be differentiable $\\mathcal H^k$-almost everywhere, for some nonnegative integer $k < n$, where $\\mathcal H^k$ denotes the $k$=dimensional Hausdorff measure. We show that $\\|\\nabla f\\|_{L^\\infty (\\mathcal H^k)} = \\|\\nabla f\\|_{L^\\infty(\\mathcal H^n)}.$ We deduce that convergence in the Sobolev space $W^{1, \\infty}$ preserves everywhere differentiability. As a further corollary, we deduce that the class $C^1 (\\Omega)$ of continuously differentiable functions is closed in $W^{1, \\infty}(\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2025-05-12T19:22:37.000Z" } ], "analyses": { "subjects": [ "26A16" ], "keywords": [ "lebesgue measure", "dimensional hausdorff measure", "open subset", "sobolev space", "nonnegative integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }