{ "id": "2505.07120", "version": "v1", "published": "2025-05-11T21:07:13.000Z", "updated": "2025-05-11T21:07:13.000Z", "title": "Asymptotic Mass Distribution of Random Holomorphic Sections", "authors": [ "Turgay Bayraktar", "Afrim Bojnik" ], "comment": "18 pages", "categories": [ "math.CV", "math.DG", "math.PR" ], "abstract": "In this note, we prove a central limit theorem for the mass distribution of random holomorphic sections associated with a sequence of positive line bundles endowed with $\\mathscr{C}^3$ Hermitian metrics over a compact K\\\"{a}hler manifold. In addition, we show that almost every sequence of such random holomorphic sections exhibits quantum ergodicity in the sense of Zelditch.", "revisions": [ { "version": "v1", "updated": "2025-05-11T21:07:13.000Z" } ], "analyses": { "keywords": [ "random holomorphic sections", "asymptotic mass distribution", "central limit theorem", "positive line bundles", "hermitian metrics" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }