{ "id": "2505.04929", "version": "v1", "published": "2025-05-08T04:06:05.000Z", "updated": "2025-05-08T04:06:05.000Z", "title": "Nordhaus-Gaddum-type theorems for maximum average degree", "authors": [ "Yair Caro", "Zsolt Tuza" ], "comment": "46 pages", "categories": [ "math.CO" ], "abstract": "A $k$-decomposition $(G_1,\\dots,G_k)$ of a graph $G$ is a partition of its edge set into $k$ spanning subgraphs $G_1,\\dots,G_k$. The classical theorem of Nordhaus and Gaddum bounds $\\chi(G_1) + \\chi(G_2)$ and $\\chi(G_1) \\chi(G_2)$ over all 2-decompositions of $K_n$. For a graph parameter $p$, let $p(k,G) = \\max \\{ \\sum_{i=1}^k p(Gi) \\}$, taken over all $k$-decompositions of graph $G$. In this paper we consider $M(k,K_n) = M(k,n) = \\max \\{ \\sum_{i=1}^k \\mathrm{Mad}(G_i) \\}$, taken over all $k$-decompositions of the complete graph $K_n$, where $\\mathrm{Mad}(G)$ denotes the maximum average degree of $G$, $\\mathrm{Mad}(G) = \\max \\{ 2e(H)/|H| : H \\subseteq G \\} = \\max \\{d(H) : H \\subseteq G \\}$. Among the many results obtained in this paper we mention the following selected ones. (1) $M(k, n) < \\sqrt{k} n$, and $\\lim_{k\\to\\infty} ( \\liminf_{n\\to\\infty} \\frac{M(k,n)}{\\sqrt{k}\\,n} ) = 1$. (2) Exact determination of $M(2,n)$. (3) Exact determination of $M(k,n)$ when $k = \\binom{n}{2} - t$, $0 \\leq t\\leq (n-1)^2/3$. Applications of these bounds to other parameters considered before in the literature are given.", "revisions": [ { "version": "v1", "updated": "2025-05-08T04:06:05.000Z" } ], "analyses": { "subjects": [ "05B05", "05C07", "05C35" ], "keywords": [ "maximum average degree", "nordhaus-gaddum-type theorems", "exact determination", "decomposition", "graph parameter" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable" } } }