{ "id": "2505.04547", "version": "v1", "published": "2025-05-07T16:27:41.000Z", "updated": "2025-05-07T16:27:41.000Z", "title": "Birkhoff normal form via decorated trees", "authors": [ "Jacob Armstrong-Goodall", "Yvain Bruned" ], "comment": "22 pages", "categories": [ "math.AP", "math.DS", "math.RA" ], "abstract": "We derive an explicit tree based ansatz for the Birkhoff normal form up to any order in the context of Hamiltonian PDEs. To do so we make use of a tree based representation of iterated Poisson brackets to encode the nested Taylor expansions along flows of a sequence of symplectic transformations. As an example we consider the cubic Schr\\\"odinger equation.", "revisions": [ { "version": "v1", "updated": "2025-05-07T16:27:41.000Z" } ], "analyses": { "keywords": [ "birkhoff normal form", "decorated trees", "explicit tree", "iterated poisson brackets", "nested taylor expansions" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }